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Director configuration of planar solitons in nematic liquid crystals

Henryk Arodźand Joachim Stelzer
Instytut Fizyki, Uniwersytet Jagiellon´ski, Reymonta 4, 30-059 Krako´w, Poland

~Received 16 September 1997!

The director configuration of disclination lines in nematic liquid crystals in the presence of an external
magnetic field is evaluated. Our method is a combination of a polynomial expansion for the director and of
further analytical approximations which are tested against a numerical shooting method. The results are par-
ticularly simple when the elastic constants are equal, but we discuss the general case of elastic anisotropy. The
director field is continuous everywhere apart from a straight line segment whose length depends on the value
of the magnetic field. This indicates the possibility of an elongated defect core for disclination lines in nematics
due to an external magnetic field.@S1063-651X~98!15602-7#

PACS number~s!: 61.30.Jf, 11.27.1d
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I. INTRODUCTION

Nematic liquid crystals are systems which are positiona
disordered, but reveal a long-range orientational order@1#.
This property is described on a mesoscopic level by a
vector fieldn(r), which is calleddirector. Due to the absence
of a permanent polarization in the nematic phase the dire
just indicates the orientation, but its has neither head nor
This particular feature yields very interesting defect str
tures in nematic liquid crystals. For instance, the direc
field shows line defects in three dimensions~or, equivalently,
point defects in two dimensions!, calleddisclinations, which
have been studied and classified by topological methods@2–
5#. Unlike in spin systems, disclinations of topologic
charge6 1

2 are possible and stable in nematics. When
external magnetic field is applied perpendicular to suc
disclination line, the resulting director configuration becom
even more interesting; it can be regarded as a domain
filling a half-plane which terminates in the disclination lin
Such walls with edges, known as planar solitons@6#, have
been discussed for superfluid3He by Mineyev and Volovik
@7#. Whereas the qualitative behavior of these solitonlike
jects is well-established, a quantitative understanding of t
structure can be obtained only from a thorough analysis
the underlying field theory. Its is the aim of our paper
perform such calculations. Our approach is based on a p
nomial expansion of the director field. This method has b
used previously both in relativistic field theories@8,9# and for
the evaluation of domain wall dynamics in nematics@10#. It
yields approximate analytical solutions for the director o
entation.

The paper is organized as follows. In Sec. II the direc
field equation for the planar solitons is derived. Section
develops a method for obtaining an approximate solution
the tilt angle of the director. Our technique is a combinat
of the polynomial expansion@8–10# with further approxima-
tions that are tested by means of a numerical shoo
method@11#. The discussion is performed within the fram
work of the Oseen-Zo¨cher-Frank elasticity@12–14#. In Sec.
IV we estimate the energy of the defect core of the pla
solitons, and we minimize the total energy of the solitons
order to determine the length of the core. Section V conta
concluding remarks.
571063-651X/98/57~3!/3007~8!/$15.00
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II. DIRECTOR FIELD EQUATION AND BOUNDARY
CONDITIONS FOR PLANAR SOLITONS

A. Free energy and field equation

The geometry for planar solitons in nematic liquid cry
tals is drawn schematically in Figs. 1~positive soliton! and 2
~negative soliton!. The director field is essentially plana
perpendicular to a disclination line of strength6 1

2 along the
z direction of a Cartesian coordinate frame. Because
structure is independent onz, we restrict ourselves to thex-
y plane (z50). Now we impose a magnetic field in the plan
of the director along thex axis. Due to the magnetic aniso
ropy of the nematic the director tends to align along t
magnetic field. However, the topological charge of the d
clination has to be conserved. The resulting structure i
planar domain wall of Ne´el type @15,16,10#, which ends in
the disclination line@7,6#. Locally, close to the disclination
the director field preserves the defect structure. However
a plane at a finite distance from the disclination line, which
given by the half widthy0 of the planar Ne´el wall ~Figs. 1
and 2!, the director field is aligned parallel to the extern
magnetic field@7,6#.

Due to the translational symmetry along thez axis it is
sufficient to perform the calculations in two dimensions on

FIG. 1. Geometry and coordinates for a positive planar soli
in a nematic liquid crystal.
3007 © 1998 The American Physical Society



th
e

ia

e

re

e
n-

-

x

on

s-

t
y of
.
h

s a

the
e is
nar
i-

n-

c-

e-
ge-
is

ito

3008 57HENRYK ARDOŹ AND JOACHIM STELZER
The director orientation is then completely determined by
tilt angle fieldF(x,y), which is measured with respect to th
direction of the magnetic fieldH (x axis!,

n5cosF~x,y!x̂1sinF~x,y!ŷ, H5H0x̂. ~1!

We look for static director configurations, henceF does not
depend on time.

The geometry of Figs. 1 and 2 holds for nematic mater
with positive magnetic anisotropyDx. The same director
configuration can be achieved for negativeDx, too. In the
latter case the magnetic field should be applied along thy
direction.

The static director orientation inside the soliton cor
sponds to a configuration minimizing the total free energyF
~per unit length in thez direction! which contains both the
energy of the nematic phaseFnem and the core energy of th
disclinationFcore. ~Within the defect core local phase tra
sitions may occur.! The nematic energyFnem is the area in-
tegral of a free energy densityFnem. This free energy den
sity, in turn, consists of elastic contributions~due to
distortions of the director field! and of a magnetic part~tak-
ing into account the interaction of the nematic with the e
ternal magnetic field!, henceFnem5Felast1Fmag. The elastic
free energy density follows from the Oseen-Zo¨cher-Frank
expression@12–14#,

Felast5
1
2 K11~div n!21 1

2 K33~n3curl n!2. ~2!

In Eq. ~2! K11 andK33 denote the elastic constants forsplay
andbenddeformations in the nematic. Due to the restricti
to planar director fields according to Eq.~1! there are no
twist deformations and the elastic constantK22 does not enter
the calculations.

The magnetic free energy density couples the directorn to
the magnetic fieldH via the anisotropy of the magnetic su
ceptibility Dx (m0 means the magnetic field constant!

Fmag52 1
2 m0Dx~n•H!2. ~3!

When inserting the ansatz for the planar director field~1!
into Eqs.~2! and~3!, we obtain the free energy densityFnem
of the nematic phase,

FIG. 2. Geometry and coordinates for a negative planar sol
in a nematic liquid crystal.
e

ls
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Fnem5 1
4 ~K111K33!~Fx

21Fy
2!1 1

4 ~K332K11!~Fx
22Fy

2!

3cos2F1 1
2 ~K332K11!FxFy sin2F

2 1
4 m0DxH0

2~11cos2F!. ~4!

In Eq. ~4! Fx and Fy denote partial derivatives of the til
angle with respect to the spatial coordinates. The energ
the defect coreFcore will be discussed separately in Sec. IV

The director configuration for the planar soliton, whic
minimizes the energy of the nematic phase, follows a
solution of the corresponding Euler-Lagrange equation

dFnem

dni
[

]Fnem

]ni
2] j S ]Fnem

]~] jni !
D50. ~5!

The resulting equation for the tilt angle fieldF(x,y) can be
written in the following form:

Fxx1Fyy1K̄@]x~Fx cos2F!2]y~Fy cos2F!#

1K̄@]x~Fy sin2F!1]y~Fx sin2F!#1K̄~Fx
22Fy

2

22FxFy! sin2F2
m0DxH0

2

K111K33
sin2F50, ~6!

where

K̄5
K332K11

K111K33

is the elastic anisotropy.

B. Boundary conditions

The boundary conditions are an essential feature of
planar solitons. As discussed above, the defect structur
surrounded by a homogeneous director field and by a pla
Néel wall. According to the choice of our Cartesian coord
nate frame~Figs. 1 and 2! the tilt angle should be zero aty
56y0, wherey0 is the half width of the Ne´el wall. Addi-
tionally, it should glue smoothly to the homogeneous orie
tation. Thus the boundary conditions in they direction~per-
pendicular to the magnetic field! are given by

F~x,y5y0!50,

F~x,y52y0!56p,

Fy~x,y56y0!50, ~7!

where6p is for the positive and negative soliton, respe
tively.

In the x direction ~parallel to the magnetic field!, the di-
rector field atx<0 coincides with the planar Ne´el wall. For
increasingx coordinate the domain wall structure is d
stroyed and the director field changes towards the homo
neous orientation, parallel to the magnetic field, which
reached atx0. Hence,

F~x50,y!5FNeel~y!, F~x5x0 ,y!50. ~8!

It is important to note that the value ofx0 is yet unknown at
this stage.

n
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57 3009DIRECTOR CONFIGURATION OF PLANAR SOLITONS . . .
The function FNeel(y) describes the director inversio
due to the planar Ne´el wall. It can be determined by solvin
the field equation~6! in one dimension. Forx<0 there is no
dependence on the coordinatex and the field equation is
simplified to

~12K̄ cos2F!Fyy1K̄Fy
2 sin2F2

m0DxH0
2

K111K33
sin2F50.

~9!

The center line of the cross section of the domain w
with the x-y plane coincides with the linex<0, y50, with
tilt angle F56p/2 on it. Now, following the approach de
veloped in our recent publication@10#, we apply apolyno-
mial expansionof the tilt angle up to third order in the dis
tancey from the center line,

FNeel~y!56
p

2
7

3p

4

y

y0
6

p

4 S y

y0
D 3

. ~10!

The different signs are valid for positive and negative so
tons, respectively. Due to the choice of the coefficients in
expansion~10!, the boundary conditions~7! are fulfilled.
With the approximate expression~10! for FNeel(y) we can
satisfy Eq.~9! up to terms proportional to the first power o
y. This fixes the half widthy0 of the planar Ne´el wall,

y05
3p

4H0
A KNeel

m0Dx
, KNeel5S 11

32

9p2D K332K11.

~11!

It is of the order of the magnetic coherence length. Equati
~11! and ~10! are used in Eq.~8!, which now provides the
boundary conditions in thex direction.

The approximate solution~10! could be improved by tak-
ing a higher order polynomial. If it is of the orderyn, then
Eq. ~9! can be satisfied up to terms proportional toyn22. In
the present paper we shall restrict ourselves to cubic poly
mials in y, which are sufficient to reveal our method of o
taining the approximate director field for the planar solito

III. TILT ANGLE FIELD FOR PLANAR SOLITONS

Our strategy for solving the nonlinear partial different
equation~6! for the tilt angleF(x,y) proceeds in two steps
First we apply the polynomial expansion of the tilt ang
field in they coordinate. After separating they dependence
we are left with a set of ordinary differential equations whi
is solved both numerically and, approximately, analytica
Of course, the polynomial expansion iny must satisfy the
boundary conditions~7!. Therefore, up to third order@in con-
gruence with the expansion for the Ne´el wall ~10!# it reads

F~x,y!5S 6
F0~x!

y0
2

1C~x!yD ~y7y0!2 modp,

for y>0, y<0 resp. ~12!

The polynomial expansion~12! contains two unknown
functionsF0(x) andC(x) that depend on thex coordinate.
ll

-
e

s

o-

.

We can derive boundary conditions for them by inserting E
~12! into Eq. ~8!. This yields~for the positive solitons!

F0~x50!5
p

2
, F0~x5x0!50, ~13!

C~x50!5
p

4y0
3

, C~x5x0!50. ~14!

Our ansatz~12! is continuous everywhere apart from thex
axis (y50). When crossing thex axis betweenx50 andx
5x0, a jump in the director orientation from1F0(x) to
2F0(x) occurs. This is connected to the physical singular
of the disclination line in the center of the defect. Most s
nificantly, due to the influence of the external magnetic fie
the cross section of the defect core is no more a point
object in thex-y plane, but it is extended to a segment of
straight line of lengthx0. However, although the core of th
defect is now striplike~if we take into account thez direc-
tion!, one can define its center line. It is located atx5xd ,
whereF0(x5xd)5p/4, which gives the largest jump~equal
to p/2) in the director orientation aty50. At x<0 there is
no physical singularity, becauseF052p/2 is equivalent to
F051p/2.

The discontinuity of Eq.~12! at y50 reflects the fact tha
the continuum approach is no more valid close to the de
core, where strong gradients of the orientational order
apparent. On a molecular length scale around the core
mesoscopic director loses its physical significance as the
erage molecular orientation. Remarkably, although when
ing the director approach we cannot determine the orie
tional order within the defect core, our investigation giv
hints on a possible elongated shape of the core of the di
nation line in the presence of the magnetic field. The ext
sion of the defect core~i.e., the actual value ofx0) can only
be determined when including the core energy into the
vestigation. This will be performed in the following sectio

We now proceed by inserting the third order polynom
expansion~12! into Eq. ~6!. By comparison of the coeffi-
cients for the first two powers in they coordinate~i.e.,
y0,y1) we obtain two ordinary differential equations for th
unknown expansion coefficientsF0(x) andC(x). It is con-
venient to change to a set of dimensionless variables by m
suring all length scales in units ofy0,

x5y0 x̄ , C52F0 , G5y0
3C. ~15!

We also introduce the notation

1

h2
511S 11

9p2

16 D K̄.

The equations forC andG have the following form:

1
2 ~11K̄ cosC!C91~12K̄ cosC!~C24G!2K̄@ 1

4 C82

2~G2C!2#sinC12K̄~G82C8!sinC12K̄~G2C!

3C8 cosC2K̄~G2C!C8 sinC2
1

h2
sinC50 ~16!
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and

1
2 ~11K̄ cosC!~G92C9!2

1

2
K̄~G2C!C9 sinC13~12K̄cosC!G1K̄~G2C!~C24G! sinC

2
1

2
K̄@C8~G82C8!22~G2C!~C24G!# sinC1K̄~C824G8! sinC

2K̄~G2C!F1

4
C822~G2C!2GcosC12K̄~G2C!~G82C8! cosC

22K̄C8~G2C!2sinC2K̄C8~G2C!2 cosC12K̄F ~G2C!~G82C8!

1
1

2
C8~C24G!G cosC2K̄F ~G2C!~G82C8!1

1

2
C8~C24G!GsinC

2
1

h2
~G2C! cosC50. ~17!
to
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In Eqs. ~16! and ~17!, 8 denotes derivatives with respect
the dimensionless variablex̄ .

The set of ordinary differential equations~16! and ~17!
becomes much simpler for the one-constant approxima
(K̄50). In this particular case the equations above
equivalent to the following ones:

C958G22C12 sinC, ~18!

G952G22C12~G2C! cosC12 sinC. ~19!

Nevertheless, we shall analyze the set~16!, ~17!. It turns out
that a numerical solution and, ifK̄ is not too large, also an
approximate analytical solution can be obtained.

According to Eqs.~13! and ~14! the boundary conditions
~for positive solitons! now read~with x̄ 05x0 /y0)

C~ x̄ 50!5p, C~ x̄ 5 x̄ 0!50, ~20!

G~ x̄ 50!5
p

4
, G~ x̄ 5 x̄ 0!50. ~21!

Equations~16!, ~17!, ~20!, and~21! define a standard two
point boundary value problem. It can be solved numerica
for instance by ashooting method@18,19,11#. Satisfying the
boundary conditions atx̄ 50, the ordinary differential equa
tions ~16! and~17! are integrated numerically up tox̄ 0. The
integration constants are adapted iteratively in order to m
mize the discrepancy between the numerical solution and
boundary conditions atx̄ 0. For obtaining solutions forC( x̄ )
and G( x̄ ) we used a computer code from Ref.@11#. Our
calculations were performed for parameters correspondin
the liquid crystalline materialsN-(p-methoxybenzylidene!-
p- buthylaniline ~MBBA ! and p-azoxyanisole~PAA! ~see
Sec. IV!. In these cases the numerical solution almost co
cides with the approximate analytical solution presented
low.
n
e

,

i-
he

to

-
e-

An approximate analytical solution of Eqs.~16! and ~17!
can be achieved, which turns out to be quite accurate
being revealed by a comparison with the numerical solutio
We start from the observation that the free energy densit
the defect core, which corresponds to a disordered phas
much higher than the typical elastic energy of the nema
Therefore we expect that the core sizex0 is small in com-
parison with the half-width of the Ne´el wall y0, i.e., x̄ 0
5x0 /y0!1. Furthermore,C and G change by a finite
amount on the interval@0,x̄ 0#, namely, byp or p/4, respec-
tively. Therefore, the derivativesC8, G8 are of the order
p/ x̄ 0. They are much larger thanC and G. One cannota
priori exclude that also the second-order derivatives
large, of the orderp/ x̄ 0

2. The approximation consists o
keeping in Eqs.~16! and ~17! the leading terms only. Then
Eq. ~16! reduces to

~11K̄ cosC!C92
1

2
K̄C82 sinC50, ~22!

which can immediately be integrated yielding

~11K̄ cosC!1/2C85const. ~23!

In the same approximation Eq.~17! simplifies to

~11K̄ cosC!~G92C9!2K̄C8~G82C8! sinC2
1

2
K̄~G

2C!C82 cosC2K̄~G2C!C9 sinC50. ~24!

In addition to the smallness ofx̄ 0 one can also exploit the
fact that the elastic anisotropyK̄ can be rather small. Fo
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57 3011DIRECTOR CONFIGURATION OF PLANAR SOLITONS . . .
example, for MBBA its value is 0.11, while for PAA it is
0.36. Moreover, in Eqs.~22! and~24! K̄ is multiplied by the
sinus or cosinus ofC; this effectively diminishes the signifi
cance of the terms proportional toK̄ even further. Therefore
it is natural to look for solutions of Eqs.~22! and~24! in the
form of an expansion into powers ofK̄. Up to first order inK̄
we obtain

C5pS 12
x̄

x̄ 0
D 2

1

2
K̄ sinFpS 12

x̄

x̄ 0
D G1O~K̄2!,

~25!

and

G5
p

4 S 12
x̄

x̄ 0
D 22K̄ sinFpS 12

x̄

x̄ 0
D G1

3p

8
K̄S 12

x̄

x̄ 0
D

3X11cosFpS 12
x̄

x̄ 0
D GC1O~K̄2!. ~26!

A comparison with the numerical solutions of Eqs.~22! and
~24! shows that the functions in Eqs.~25! and~26! yield very
good approximations up toK̄50.6.

IV. LENGTH OF THE DEFECT CORE

Up to this stage, the length of the planar solitonx0 ~or,
equivalently,x̄ 05x0 /y0) is unknown. We fix it by minimiz-
ing the total free energy, which includes the elastic and m
netic energy of the nematic phase as well as the energy o
defect core.

Let us first calculate the total nematic energyFnem ~per
unit length along thez axis! for the soliton extending ove
the rectangle 0<x<x0 , 2y0<y<y0, which contains the
core of the defect aty50. Outside this rectangle there is th
planar Néel wall at x<0, 2y0<y<y0, and the homoge-
neous director orientation parallel to the external magn
field along the three remaining sides of the rectangle. Th
fore the rectangle contains the total elastic and magnetic
ergy of the distorted nematic due to the presence of the
fect. It is given by the integral

Fnem52E
0

x0
dx E

0

y0
dy Fnem@F~x,y!#, ~27!

whereFnem is given by Eq.~4!. For the tilt angleF(x,y) we
use the approximate solution according to Eqs.~12!, ~15!,
~25!, and~26!. The integrals in Eq.~27! can be calculated by
help of a computer algebra system~e.g.,MAPLE!. The result
has the following form:

Fnem5
1

2
~K111K33!F0.58

x̄ 0

20.72x̄ 0

1K̄S 0.19

x̄ 0

10.93211.69x̄ 0D G . ~28!

The terms proportional to 1/x̄ 0 stem from elastic energy
terms inFnem proportional toFx

2 . Due to these terms th
g-
he

ic
e-
n-
e-

elastic energy of a defect with a pointlike core would
infinite, because for such a defectx̄ 050.

The expression~28! would suggest thatx̄ 0 should be as
large as possible; then,Fnem would be minimal. In fact, this
is not the case, due to the very large free energy stored in
defect core, where local transitions into disordered pha
may occur. Let us perform an estimate of this core ener
~Again, it is understood that we consider the energy per u
length along thez axis.! The energy of the core is due t
large gradients in the orientational order, which appear o
molecularlength scale. Therefore, it cannot be expressed
terms of the mesoscopic director field, but it is related to
molecular interaction potential across the discontinuity in
tilt angle on the segment 0<x<x0 of the x axis. This mo-
lecular interaction energy is small at the beginning and at
end of the core where the molecules on both sides of
segment are almost parallel. However, inside the core
molecules can even be perpendicular to each other. In
latter case the discontinuity of the tilt angle is equal top/2,
and the separation of centers of mass of the molecules
the orders0 /A2 wheres0 denotes the molecular length. I
the present paper we shall be satisfied with a rough estim
obtained by assuming that the core energy density is gi
by Eq. ~4!, when all terms are neglected except for1

4 (K11

1K33)Fy
2 , with Fy'(p/2)/(s0 /A2). The width of the core

is taken to be of the orders0 /A2. This yields an estimate fo
the total energy of the core

Fcore'
1

4
~K111K33!Fy

2x0

s0

A2
5

p2

8A2
~K111K33!

y0

s0
x̄ 0 .

~29!

The total energy of the planar soliton is thenF5Fnem
1Fcore. We now insert Eqs.~28! and~29! and then minimize
F with respect to the reduced core lengthx̄ 0. It is easy to
find out that thex̄ 0 corresponding to the minimum total en
ergy is given by

x̄ 0
25

0.5810.19K̄

1.74y0 /s020.72211.69K̄
. ~30!

Let us computex̄ 0 for particular nematic materials. Fo
N-(p-methoxybenzylidene!-p-buthylaniline ~MBBA ! at
25 °C @17# the elastic constants areK1156.0310212 N and
K3357.5310212 N. The magnetic anisotropy ism0Dx
59.731028 V s/A m, the molecular lengths0530 Å. The
magnetic field strengthH0 is chosen 500 Oe, according to
magnetic flux densityB0[m0H050.05 T. Then, the elastic
anisotropy isK̄50.11. Equation~11! yields y053900 Å. Fi-
nally, x̄ 0

2'0.0027, andx0'202 Å.
For p-azoxyanisole~PAA! at 125°C@17# the elastic con-

stants areK1154.5310212 N and K3359.5310212 N. The
magnetic anisotropy ism0Dx512.131028 V s/A m, the
molecular lengths0520 Å. The magnetic field strengthH0

is again chosen 500 Oe. The elastic anisotropy isK̄50.36,
y054940 Å, and finallyx̄ 0

2'0.0015,x0'191 Å.

We notice that in both examplesx̄ 0
2 is rather small, in-

deed. This is consistent with the assumption leading to
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approximate solutions~25! and ~26!. The resulting physica
length of the corex0 is relatively large and it probably coul
be seen in appropriate experiments. The dependence o
nematic, core, and total energies on the reduced length o
defect core is plotted in Figs. 3~MBBA ! and 4~PAA!.

With the determination of the reduced core lengthx̄ 0 the
calculation of the director field for the planar soliton is com
pleted. The tilt angle field is shown in Figs. 5~positive soli-
ton! and 6~negative soliton!. The core line aty50 is clearly
visible by the jump of the tilt angle. However, this picture

FIG. 3. Free energy~per unit length! F8 vs core lengthx̄ 0 for
MBBA at 25 °C. Both quantities are in arbitrary units~dimension-

less!. F85F/Kav, x̄ 05x0 /y0, with units Kav[
1
2 (K111K33)

56.75310212 N, y053900 Å. Dashed line, analytical solution fo
the energy of the nematic phase; rhombs, numerical solution for
energy of the nematic phase; dotted line, analytical solution for
energy of the defect core; crosses, numerical solution for the en
of the defect core; solid line, total energy.

FIG. 4. Free energy~per unit length! F8 vs core lengthx̄ 0 for
PAA at 125 °C. Both quantities are in arbitrary units~dimension-

less!. F85F/Kav, x̄ 05x0 /y0, with units Kav[
1
2 (K111K33)57

310212 N, y054940 Å. Dashed line, analytical solution for th
energy of the nematic phase; rhombs, numerical solution for
energy of the nematic phase; dotted line, analytical solution for
energy of the defect core; crosses, numerical solution for the en
of the defect core; solid line, total energy.
the
he

somewhat misleading, because it does not take into acc
that the director is an object without arrowhead. For instan
at x̄ 50, ȳ 506 there is a jump byp which in fact means
an orientational change of zero angle, exactly the same a
x̄ 5 x̄ 050.052, ȳ 506. As already stated in the precedin
section, due to the periodocity ofp for tilt angle changes the
largest orientational jump occurs forx̄ d50.025, ȳ d506,
where the tilt angle is6p/4. This point can be defined as th
center of the core which is related to the original disclinati
line ~in three dimensions!.

These particular features become obvious from a lat
visualization of the director field, which is presented in Fig
7 ~positive soliton! and 8~negative soliton!. ~In these figures
the x andy dimensions arenot proportionally scaled.! Rods
of unitary length placed on the sites of a rectangular latt
indicate the local orientation. The dashed line means the
fect core and the small circle marks the center of the co
according to the previous discussion.

V. REMARKS

~i! The positive and negative planar soliton are dist
guished by the boundary conditions~20! and~21!, but not by

e
e
gy

e
e
gy

FIG. 5. Tilt angle field for a positive planar soliton in MBBA a

25 °C. Spatial coordinates in arbitrary units.x̄ 5x/y0, ȳ 5y/y0

(y053900 Å!.

FIG. 6. Tilt angle field for a negative planar soliton in MBBA a

25 °C. Spatial coordinates in arbitrary units.x̄ 5x/y0, ȳ 5y/y0

(y053900 Å!.
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the field equations. Therefore they cover exactly the sa
area, although their energy content is slightly different. Th
tilt angle field for the negative solitonF2(x,y) is obtained
from the positive soliton solutionF(x,y) presented above by
a sign inversion of the expansion coefficients:F0

2(x)
52F0(x) andC2(x)52C(x).

~ii ! Expression~30! reveals a rather interesting depen
dence of the reduced core lengthx̄ 0 on the magnetic fieldH0
which enters throughy0 @see Eq.~11!#. For weak magnetic
fields we have largey0, hencex̄ 0 is small and it tends to zero
when the magnetic field vanishes. However, the physic
length of the core is equal tox05y0 x̄ and it increases as
1/AH0 when the magnetic field decreases. The physical re
son is that for a weaker magnetic field the distance ov
which the director field can be reorientated by a given ang
is larger. In the case of planar solitons the required reorie
tation is such that the tilt angle changes fromFNeel(y) to-
wards zero. Of course in this limit the width of the Ne´el
domain wall ~11! also increases, as 1/H0, hence faster. On
the other hand, with increasing magnetic fieldy0 decreases
and x̄ 0 increases. From inserting Eq.~11! into Eq. ~30! it is
noticed that formally there is a finite critical value for th
magnetic field at whichx̄ 0 becomes infinite. For MBBA the
dependence of the reduced and physical core lengthx̄ 0 and
x0 on the reduced magnetic fieldh[H@Oe#/500 is

x̄ 050.55A h

112.82h
,

x0@Å#

202
5

10.57

Ah~112.82h!
,

~31!

which yields a critical reduced magnetic fieldhc5112.8, cor-

FIG. 7. Lattice visualization of the director configuration for
positive planar soliton.
e
e

al
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responding to a critical flux density of 5.64 T. However, it
should be remembered that Eq.~30! has been derived under
the assumption thatx̄ 0

2 is small, so it may become wrong
well before reaching the critical value of the magnetic field.

~iii ! In the present paper we have assumed that the dire
tor configurations in all the planes perpendicular to thez axis
are identical. One could attempt an analysis of more gener
configurations by combining ideas of the present paper an
of Refs.@9,10#. In @10# we have evaluated the time evolution
of cylindrical Bloch and Ne´el domain walls in a nematic
liquid crystal, and in@9# the dynamics of a generic, curved
relativistic domain wall in a scalar field model is investi-
gated; in both papers the polynomial approximation is used
Within a generalized calculation we expect that the function
C andF0 in the polynomial expansion, as well as the half-
width y0 of the Néel wall would depend on the coordinates
x, z, and on timet. The variabley would have to be inter-
preted as a comoving coordinate@9,10#. The director con-
figuration will be time-dependent in general. Equations for
C, F0, and y0 could be obtained from the torque balance
@10#

g1

]ni

]t
1

dF
dni

50, ~32!

whereg1 is the rotational viscosity of the nematic. Because
of the larger number of independent variables, such equa
tions will be much more difficult to solve, and we expect that
approximate analytical solutions can be found only in some
particular cases. On the other hand, one may expect that d
to the viscous torques the evolution of the director field
n(r,t) will terminate in a stable, time-independent configu-
ration of minimum energy. The planar soliton defect dis-
cussed in the present paper is probably an example of such
stable configuration.

FIG. 8. Lattice visualization of the director configuration for a
negative planar soliton.
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3014 57HENRYK ARDOŹ AND JOACHIM STELZER
To conclude, we found an approximate solution for t
director configuration in planar solitons in nematics. It
continuous everywhere apart from a strip of finite wid
This points out the possibility of an elongated shape of
defect core in disclination lines due to an external magn
field.
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